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A laboratory model for the study of a barotropic general ocean circulation has been constructed following
the strict geometrical constraints of the #-plane approximation. Fluid is confined by plastic blocks to the
volume defined by the intersection of two spherical surfaces, of common centre and slightly different radii
with a circular cylinder whose axis intersects the centre of the spheres. The entire system is rotated and an
interior circulation is provided by relative rotation of one of the bounding blocks. Uniform density of the
rigidly enclosed fluid ensures the irrelevance of laboratory gravity and the absence of centrifugal effects on
the flow. Fluid flow is observed with an electrochemical technique. Lines of coloured fluid which move
with the local velocity are produced and photographed; velocities are inferred to 5 9%, accuracy. Rossby
numbers from 1.3 x 10~* to 7.7 and Ekman numbers from 3.1 x 10— to 3.1 x 10-2 have been achieved.
The apparatus can be oriented at an arbitrary mean latitude. The phenomena characteristic of linear
subtropical gyres have been observed: a meridional Sverdrup flow, its associated zonal flow and a western
boundary current. The existence, structure, and parameter dependencies of these features are in good
agreement with the predictions of a general linear boundary layer analysis which has been developed for
a thin barotropic ocean. The Sverdrup vorticity balance and the width and structure of the bottom
frictional western boundary current have been established within the experimental uncertainties. In the
nonlinear régime the position of the centre of the gyre has been measured as it migrates north-westward;
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534 D. J. BAKER, Jun. anp A. R. ROBINSON

a poleward eastern boundary current appears. These results agree with theoretical estimates for the onset
of nonlinear behaviour. A long period time dependent flow is observed for high Rossby number. Quantita-
tive studies have been made on an equatorial undercurrent which moves in a direction opposite to the
surface forcing velocity. For low Rossby numbers this flow reverses with change in direction of the forcing
velocity. In the nonlinear régime, the westward flowing undercurrent developed a streakiness and
disappeared; whereas the eastward flowing current remained defined and measurable.

1. THE PROBLEM AND THE MODEL

1.1. The general circulation problem

"To understand the physics of the general circulation of the oceans remains a challenging problem
in planetary scale fluid dynamics. Although certain qualitative aspects of the distribution of
currents have been rationalized, the fundamental manner in which momentum, vorticity and
energy are conserved in the circulation remains unknown. This complex problem will be
unravelled only through simultaneous attack by empirical observational studies, the examina-
tion of such data via heuristic mathematical models, and the probing of relevant fluid dynamical
process via experimental and theoretical models. In the latter category falls a number of recent
studies of the so-called wind driven ocean circulation problem, i.e. the problem of relating the
distribution of surface or depth averaged currents to the distribution of surface wind stress.
(Robinson 1965 ; Stommel 1965 ; Greenspan 1968.)

Early studies were successful in relating gross features of the circulation to the wind forcing in
terms of very simple linear mathematical models which included the gross constraints of the
Earth’s rotation and geometry. The geometry is approximated by local surface Cartesian
coordinates and Coriolis accelerations are effected only by the vertical component of the Earth’s
rotation, which varies with latitude (the f-plane). Central to these models is a simple balance
of vorticity which is characteristic of the vast regions of the subtropical oceans away from conti-
nental boundaries and the equator (the Sverdrup vorticity relation). The relation arises from an
approximate horizontal momentum balance which is geostrophic below a surface boundary layer
through which the surface stress is imparted to the deeper fluid. This relation, when integrated
over depth, relates the local meridional transport to the wind stress curl, and in this form has
been subject to some direct observational verification (see, for example, Wyrtki 1964). It may be
concluded that these terms contribute significantly to the mid-ocean balance. Further support
for the Sverdrup balance accrues from the order of magnitude agreement between simple theory
and observation of the transports of western boundary currents.

The existence of the major subtropical gyres is implied by the Sverdrup relation since these
regions are isolated (in the transport sense) from the rest of the world ocean by approximate
latitudes of zero wind stress curl. The Sverdrup relation further implies that such a closed circu-
lation must somewhere have a more complex vorticity balance. In simple dissipative models the
deviation occurs near the western boundary, thus accounting for the Gulf Stream phenomenon
as a mass conserving planetary boundary layer.

However, more realistic models must include the nonlinear process of momentum advection
in at least some part of the non-Sverdrup flow. The inclusion of these terms increases the diffi-
culty of the problem enormously, and although a good deal of work (analytical and numerical)
has been done in attempting to understand this process, very little real progress has been made
in understanding the general circulation. Even the simplest general circulation models that
contain the nonlinear process lead to very complex mathematics which has not been able to be
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resolved unambiguously even through numerical analysis. The procedure of deducing a two-
dimensional system which is possible in the linear models by an integration over depth is pre-
cluded by nonlinearities. Although a number of nonlinear studies have been done with a heuristic
two-dimensional analogue problem, it is not clear to what extent the resulting flow patterns are
representative of any actual physical system. Furthermore, in the attempt to keep the models as
simple as possible the possibility of critical comparison with the circulation of real oceans has
been lost.
1.2. The role of laboratory experiments

Our understanding of the general ocean circulation can be enhanced by a laboratory model
by which the kind of theory applied to the real ocean, cast in specific terms for the experiment, is
subject to critical test. The effects of approximations made in analytical theories, both in the
initial assumptions and the subsequent solutions of equations, can be checked quantitatively.
Insight into the relevance of numerical models and approximations as applied to the ocean can
also be gained by similar numerical experiments on the laboratory model. The results of this
interplay between laboratory model, analytic and numerical theory may then be used to guide
a renewed attack on the real ocean problem, which in turn may lead to new laboratory experi-
mentation. As well as elucidating partially explored phenomena in a controlled situation (the
role of nonlinear boundary currents), a laboratory model may serve as a source of new oceanic
phenomena (time dependent forcing). A well designed model experiment should raise more
questions about the behaviour of both controlled and natural fluids than it answers.

The careful design of a laboratory experiment can enhance its usefulness as a guide towards
understanding of geophysical problems. The design should be based upon all available know-
ledge of the phenomenon examined in a non-dimensional framework. The process to be explored
is then isolable by a similarity matching in the appropriate parameters, with an awareness of the
parameters which are either of negligible importance or deliberately altered or ignored. The
necessary descriptive parameters arise from theoretical considerations; observation reveals the
relevant ranges of values. Although a laboratory experiment may form an interesting physical
system in its own right, its usefulness in geophysics is enhanced through proper design. The
proper design must be followed by quantitative studies, in order that critical tests may unam-
biguously verify or reject theory. The combination of quantitative measurements with a careful
‘and imaginative search for new phenomena exploits a properly designed experiment, and yields
thereby the most profound insight into the geophysical process.

The experiment to be described below is a barotropic general ocean circulation model in
which an interior vorticity balance of Sverdrup type serves as a basic design pivot. A quantitative
demonstration of such f-plane geostrophy has been achieved in the model and the ageostrophy
introduced by boundaries, friction and nonlinearities explored. The parameter ranges were
chosen in order to provide for the linear theory an unambiguous and quantitative application,
and to penetrate into the nonlinear régime.

1.8. Process isolation and the model

The parameters governing the design of the experiment derive from the scales and amplitude
of the motion, and the geometry. The general circulation scale is here considered to mean that
of the major oceanic subtropical gyres, which have similar features (Munk 1950, table 3). Thus
the concept of a typical gyre is useful in model making. The vertical scales of the motion are
overall determined by the morphology of the ocean basins and by gravity, which produces an
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536 D. J. BAKER, Jun. anp A, R, ROBINSON

essentially spherical equipotential surface.t The motion is known to be approximately geo-
strophic and hydrostatic, the latter constraint resulting primarily from the extreme thinness of
the ocean.

The geometry of the gyres may be idealized to that of a thin partial spherical shell. In a
homogeneous model of the ocean, the spherical shape of the upper surface can be modelled
mechanically by a rigid boundary. The rigid container may be rotated to produce Coriolis

this partial spherical shell
defines the region of the
working fluid
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Ficurk 2. Defining spheres and cylinder.

“} The distortion of the free surface due to centrifugal effects, normal pressure distributions, geostrophic motion,
and the piling up of water due to tangential wind stresses, is of negligible importance.
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accelerations. If the fluid be confined on all sides by rigid boundaries, the only effect of laboratory
gravity (a conservative force) will be to join with the centripetal acceleration (also conservative)
to modify the static pressure distribution. However, the dynamic pressure, and thus the velocities
relative to the container will be unaffected by the static pressure distribution. Since radial gravity
fields are not yet attainable in the laboratory it is not presently feasible to model the motion of a
stratified fluid on a sphere.

We have constructed a model following the above general considerations and the detailed
design criteria in the section to follow. The working fluid, water of homogeneous density, is
confined to the shape of a thin spherical cap. Figure 1 illustrates this cap. A side view of the
volume extracted from the defining spheres is depicted in figure 2. The volume is isolated by
machined plastic blocks, which are set on a rotating turntable. Since the kinematic effect of the
rotation is only to produce Coriolis accelerations, the position of the axis of rotation is arbitrary;
the most convenient position for it in this experiment is through the centre of the working fluid.
The relative rotation of either or both of the blocks forms a convenient source of momentum flux;
the fluid motions are thus forced by a surface velocity of constant curl. In order to view the flow
without obstruction, the bottom block rotates while the upper one remains stationary. Thus our
ocean is upside down, which is irrelevant for dynamic modelling.

2. THE DESIGN GRITERIA
2.1. Derivation of the f-plane equations

It has been shown (Robinson 1965) that the f-plane equations are derivable from the spherical
equations by purely geometrical considerations. This is done by neglecting only terms small in
the geometrical parameters within groups of terms of like dynamical origin. Thus, the approxi-
mate fB-plane equations contain a full set of non-dimensional parameters upon which an analysis
of the dynamics of any flow to occur in the container can be based. The derivation is recapitulated
here with a more complete treatment of the vertical equation and with a specialization to
molecular frictional terms, relevant for a laboratory experiment.

Let R, 6, Y be spherical coordinates (positive respectively in the radial (verticalt), latitudinal
(northward), and longitudinal (eastward) directions, with w, v, u the corresponding velocities
relative to a sphere rotating with angular velocity 2. The momentum and continuity equations

are 8u ou vou u ou

Frles R86,+Rcosﬁa¢+R+Rtan0+2!2(wcosl9—vs1n0)
1 op 9 u 2 ow 2sin0 81))
_— —— — — P G asamneed 2‘
pRcosﬁal,/f+V(Vu R2cos20+R2cosl93¢+R20052031ﬁ C
o o vov u o wv wultan6
A rwl o~ 2
5TV aRT R0 ReosOay TR R T 2usind
1 op 9 2 ow v 2sin 0 8u)
= -t 2.2
pR6TY (V R290  Ricos?0 RPcost0oy)’ (2.2)
ow 8_w+géti)+ b ?—Lg—u2+v2—2!2ucos6’
% VYRR T ReosO) R

_1op 2 2w 20y 2vtanl 2 ou
= p8R+V(V TR R RE RicosOay)’ (2.3)

+ By convention for modelling; similarly the other two components will be referred to as horizontal. A list of
symbols employed in the text appears at the end of the paper.
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1 0 1 0 1 Ou
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2.4
Rcos 800 (2.4)

where vis the kinematic viscosity, p the (homogeneous) density, and p the difference of the pressure
from its hydrostatic value which balances the gravitational and centripetal potential.

The fluid is confined within the volume defined by the intersection of two spherical surfaces, of
common centre and of radii Ro, R, + H, with a circular cylinder whose axis intersects the centre of
the spheres and lies somewhere on the cone of angle §77 — 6, from the axis of rotation. The spherical
circle cut from the inner sphere by the cylinder is of diameter 2L.

Let a set of surface coordinates be defined by

z=R—-Ry,, y=Ro(0-0,), x=Rocosbti/,

or the equivalent cylindrical coordinates 7, ¢, z (see figure 3). Let non-dimensional independent
and dependent variables be defined by

x = Lx' u=wl,

y =Ly, v =wly,

z=Hz, w= (H/L) wLw',
_t _ 2Qwl3pcosb, ,,

b= b=—"p 1,

The horizontal velocities are non-dimensionalized by the relative angular velocity w of the lower
rotating surface. The scale of the vertical velocity has been chosen H/L smaller, so as to upper
bound the vertical mass flux divergence by the horizontal divergence.

N
= —— equator
Ficure 3. Coordinate system.
Subtropical gyres are characterized by the geometrical constraints
(LIRo)?2 <1, (L/Ro)tanb, <1, H|R, <1, HRo/L2< 1. (2.5)
Under application of all but the last of (2.5), equations (2.1 to 2.4) reduce to

Oty — Y[ty + A2 (e + 10,,) | + €[, + v, + wu,] — fo+ Aw+p, = 0, (2.6)

80y — Y[V, + A2V, +0,) ] +€[uv, + 00, + wo,] + fu+p, = 0, (2.7)

1
O = YNt A2+ 10,) )+ X0 i+, 00,4 43) |+ dup =0, (28)

Uy +v,+w, = 0, (2.9)
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Here (and henceforth) the primes are dropped from non-dimensional variables. The non-
dimensional parameters are defined by

_ T Ry R .
6 = Q_Q—C(i)sié; (*L—) 5 = T tan 00,
vR, H
= 7 = . 2.10
Y =20 cos o H2L’ A—L’ ( )
_ WwRo __HR,
6229005002’ A= L2

The Coriolis parameter, defined as f = ¢ +y, differs somewhat from the usual definition in order
to include simply an equatorially centred gyre. The definitions (2.10) are thus based on the
p-effect and not the usual laboratory £ or planetary fo, (= 22sin 6,).

2.2. Parameter ranges

The design characteristics for the laboratory model must reflect an acceptable compromise
between oceanic gyre estimates, absolute scale constraints of the laboratory, certain stability
considerations, and measurement feasibility.

Four geometrical parameters are involved: the depth of the shell (), the radius of the circular
basin (L), the radius of curvature of the sphere (R,), and the latitude of the centre of the basin (6,).
Typical values which characterize the North Atlantic Ocean between 15 and 50°N (average
latitudes of zero wind stress curl) are H = 4x10°cm, L = 2x 108cm, R, = 6.4 x 108cm and
6, = 30°. Thus the ratios HIRo ~ 6% 10-4, (LJRy)* = 0.1,
HR,[L* ~ 6x 1073, (L|Ro)tanb, ~ 0.2,

more precisely replace the inequalities (2.5) for this gyre. The relevance of a model experiment
to the f-plane can be measured by the closeness to which it adheres to these restrictions. Most
difficulty occurs in achieving sufficiently small A, the crucial restraint on the modelling of thin
rotating subtropical oceans.

The existence and stability of Ekman boundary layers near the horizontal surfaces lead to
restrictions on the total depth (). The e-folding scale of these layers at latitude 6, is given by
(v/82sin 0o)%, which depth must be small compared to the total depth of the shell. A reasonable
criterion is b \d

> 3(Qsin00) ’
From the available rotation rates (see table 2) and the viscosity of the working fluid (chosen to
be water from flow visualization consideration), / > 0.15cm. The choice H = 1 cm satisfies this
criterion, is large enough to allow placement of fluid flow markers, and is still small enough to
allow reasonable choices of R,, L and 6,.

Recent studies (Faller 1963 ; Tatro & Mollo-Christensen 1967) have shown that, if Re be de-
fined as a Reynolds number based on the geostrophic velocity and the Ekman layer thickness, and
if Ro be defined as a Rossby number based on the ratio of the relative inertial acceleration to the
Coriolis acceleration, instability of the Ekman layer occurs for values of Re > (56.3 +116.8 Ro).
The f-plane geometry and source sink arrangement of their experiments produce comparable
amplitudes of the geostrophic and Ekman layer velocities. In the g-plane geometry, over most
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of the flow the Ekman layer velocities, comparable to the surface forcing velocity, are an order
of magnitude larger than the geostrophic velocities. Thus, to use their results to indicate the
probable stable range for f-plane geometry, the onset of instability is estimated here with
typical Ekman layer velocities. In the western boundary current region the geostrophic flow is
comparable to the surface velocity, thus the criterion is more directly applicable. The above
criterion indicates that the Ekman layers will be stable if the forcing angular velocity is less than
0.8rads™! (assuming typical values of the other parameters). Most of the quantitative mid-
latitude measurements in this paper fall into the stable region, although the largest nonlinear
western boundary current velocities were not measurable with the present techniques and thus
may exhibit unstable Ekman layers. For the more rapid relative rotations the larger Reynolds
number produced by equatorial thickening of the Ekman layers indicates possible instability
(especially near the rim). However, the application of this criterion there is obviously suspect;
no such instability was apparent, but the exploration was incomplete.

The scale of L was chosen as 20 cm, the largest spherical shape that could be cut by the curve
tracing lathe readily available. With A and L determined, R, = 53.5cm and 6, = 31.4° were
chosen to yield the best compromise to the geometrical restrictions for the modelling of the
subtropical gyre. The results are summarized in table 1. (The parameter A is also included for
later reference, although the assumption that it is small is not independent of (2.5).) In the
apparatus developed, L, R, are fixed and H, 6, variable.

TABLE 1. GEOMETRICAL PARAMETERS

laboratory typical
parameter theory experiment oceanic gyre
HIR <1 0.0187 0.00063
(LIR,)? <1 0.144 0.098
(LIR,) tan @ <1 0.231 0.18
HR [12 (= A) <1 0.130 0.0064
HIL(=2A) <1 0.0493 0.0020

The choice of relevant range of values for the frictional parameter y presents some difficulty
because of the dubiety and ambiguity inherent in characterizing oceanic flows by one or even
several frictional parameters. Coefficients of eddy viscosity inferred from oceanic measurements
range from 1 to 10*cm?s~ (vertical) and 10° to 108cm?2s~* (horizontal) (Sverdrup, Johnson &
Fleming 1942, tables 65 and 66). Values of y may be estimated by making ¥ and yA2 respectively
similar to the vertical and horizontal non-dimensional frictional parameters for the ocean. There
results for y the range 102 to 10=% (vertical), 10~* to 10~ (horizontal). Most uncertainty lies in
the horizontal coefficient, indeed negative values have been suggested (Webster 1965). The
laboratory frictional parameter is, of course, determined by the molecular viscosity, and is well
known.

The parameter ¢ is an overall Rossby number and it may be estimated by using observed
surface velocities. Over a typical gyre the velocities may range from 1 to 300cms=t. These
values indicate that e¢ will have a minimum of about 5 x 10~5 and may go as high as 0.1 in a
(nonlinear) western boundary current.

Pilot studies of time dependent flow have been performed, basing estimates of & on the
theoretical values of 7 for the free modes of an enclosed basin. These studies will not be reported
here, but we intend to pursue them together with an investigation of forced transient circulation.
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The model has been designed to include the above parameter ranges as closely as possible,
and also to provide for the exploration of the circulation in parameter space, from the strictly
linear régime to well into nonlinear régimes of flow. In summary, the quantities v, L, R,, are
fixed, H, 6o, w and 2 are variable. Table 2 indicates the ranges of these quantities. Table 3
indicates the range of the parameters ¢, v, A and A which can be achieved for the laboratory
experiment and presents a comparison with the values of the parameters as estimated for the
ocean. The available range clearly permits a study of the oceanic circulation in the proper range
of Ekman and Rossby numbers, with reasonably similar geometry. The parameters y and ¢
become oo when 2 = 0; the upper bounds to these parameters in table 3 are for the lowest values
of 2 such that Ekman layers are only 20 9%, of the total depth.

TABLE 2. RANGE OF EXPERIMENTAL VARIABLES

possible range range used in
variable (present equipment) present experiment
v 0.01 cm?s—1 0.01 cm?s—1
R, 53.5cm 53.5cm
L 20.3cm 20.3cm
H 0.5-4cm 1.0cm
g, 0-90° 0-31.4°
1) 0.001-10rad s~'f 0-0.85rad s~
Q 2.0-40rad s~} 0-10rads—!

1 The lower limit is fixed by the stability of the drive.
1 The lower limit is fixed by the criterion that the Ekman layers be thin compared to the depth for H = 1 cm.

TABLE 3. RANGE OF NON-DIMENSIONAL PARAMETERS

103 x estimated 103 x available
parameters oceanic range model range
A 2.0 75-9.4
A 6.4 520-65
€ 39-0.13 7700-0.13
0 270-0,0017 31-0.33

3. THE EXPERIMENTAL APPARATUS AND TECHNIQUE
3.1. The apparatus

An apparatus possessing the above geometrical properties has been constructed from two
machined lucite blocks and a lucite cylinder. The convex and concave surfaces were machined
using a curve tracing lathe and then polished. The shape is axially symmetric about the axis of
the bounding cylinder to better than 2 um, but the variation in radius of curvature may amount
to as much as 20 pm. However, this variation is small compared to typical Ekman boundary layer
thicknesses in the experiment. Detailed front and side views of the apparatus are presented in
figures 4 and 5. The upper and lower bounding blocks are designed to rotate independently of
one another; however, in most of the studies presented here, the rotatable upper block has been
replaced by a stationary one, as illustrated, and the circulation produced solely by the relative
rotation of the lower surface. The region of the working fluid will be referred to as the (ocean)
basin.

A sliding fit was made between the bottom rotating block and the outer bounding cylinder.
The region which is filled with working fluid is indicated in figure 5. The thickness of the gap
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between the block and the cylinder was 0.25 mm and qualitative observation indicated that the
fluid showed no tendency to flow through. The driving motor for the bottom plate is a Bodine
d.c. motor mounted on the rotating table and driven from the outside through the table slip rings
by a Minarik Feedback control. This arrangement allows easy change of relative velocities from
outside the rotating table. The angular velocities are steady to 0.1 %,

The rotating table upon which the entire apparatus is mounted was constructed at Harvard
from a design kindly made available to us by D.Fultz (1965). The table is driven with a

[ —— defining sphere
— T~
vz

N

/ working fluid confined
in this basin

edge of container

equator of sphere

rotating table

driving mechanism for
imposed bottom velocity

Ficure 4. Sketch of front view of apparatus.
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[
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\
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rotating table
Ficure 5. Sketch of side view of apparatus.
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synchronous motor by a timing belt through a speed reducer and a Graham Transmission
(Model 230 MR 2.8). The angular velocity of the table is measured by a digital tachometer
(Hewlett—Packard Model 508 A) and a counter (Hewlett—Packard Model 5214 L.). The angular
velocity of the table is measured by averaging the number of counts over several 10s periods
(+0.29%, accuracy). Photographs of the apparatus mounted on the table are presented in figure 6.

Ficure 6. Above: the experimental apparatus, rotating table and drive mechanism. Below: the
apparatus, relative drive mechanism (lower centre) and motorized camera (upper right).

57-2
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In order to facilitate the fluid flow measurement, the curved surface of the lower cap has been
painted white and a polar coordinate system marked on it for a background. This system consists
of concentric circles with radii differing by 1.27 cm crossed by radial lines every 9°. The angular
speed of the cap is measured by observing the time for a 90° sector to pass a non-rotating mark.
The repeatability of this measurement was found to be about 3 %,.

8.2. Measurement of the flow

A Lagrangian technique is used to delineate the flow field. Lines of marked fluid are produced
by the following technique (Baker 1966): a grid of fine wires is placed in a 0.04 %, aqueous solution
of the pH indicator Thymol Blue, which has been titrated to the end point from the basic side.
A second set of wires in the fluid completes a circuit in which an electrical current is allowed to
flow. The resulting proton transfer reaction at the surface of the wire changes the pH and thus
the colour of the solution locally. This coloured fluid moves with the local velocity. As the indi-
cator is at all times in solution, the coloured fluid is precisely neutrally buoyant and undesired
centrifugal effects are absent. The chemical technique is not useful for velocities greater than
3 or 4 cms~1, since the faster velocities sweep the coloured fluid away from the wires too rapidly
for sufficient colour change to permit photography.

0.02 mm diameter Pt wires
// TN

|

0.25 mm diameter W wires

/

Ficure 7. Front view and cross-section of wire grid measuring system.

The details of the grid (formed from 0.02 mm diameter platinum) are shown in figure 7. One
grid of wires is glued to the surface of the upper block to serve as the electrode system; the second
grid is placed midway between the two spherical surfaces, stretched between 0.25 mm diameter
tungsten wires which have been heated and pushed into the plastic. The grid wires are suf-
ficiently thin to have negligible effect on the flow. Although the thinnest possible wires are used
for the rigid supports, some perturbation (demonstrably local) is evident. An estimation of this
effect may be made using known results (Lamb 1932) of the effect of a cylinder on a uniform
flow. These estimates indicate that the perturbations may be neglected compared to other
experimental uncertainties in the region where the velocities are measured. As the platinum
wire is stretched from post to post, the grid is not strictly spherical. However, the deviations from
sphericity are not critical for measurement of linear geostrophic flow, since this flow does not
vary in the local vertical direction.

An electrical current of 0.1 A through the circuit was required to produce sufficient colour
change for photography. Although short (< 1s) pulses of the current produced no noticeable
convection effects due to heating, longer pulses of larger current did. All measurements were
checked to show that convection effects were negligible by pulsing the circuit while the fluid
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was in rigid body motion (zero relative driving). The necessary lighting for photography was
found not to produce adverse convection effects.

Photographs of the flow were taken by a remote control 35 mm Nikon F camera with a motor-
ized back, mounted on the table. This enabled sequential photographs, timed by a stopwatch, to
be taken after the current pulse. The camera is mounted so that its focal plane is parallel to the
tangent plane to the defining spheres at the centre of the basin; parallax effects were found to be
negligible. Kodak Tri-x film was developed in Acufine developer and printed on Agfa BEH 1
grade 6 paper for maximum speed and contrast. Remote control motion pictures of the flow
have proven useful primarily for qualitative studies particularly of time dependent effects. The
poor resolution of readily available motion picture film has precluded quantitative measurements
to date.

distance/cm

—
I

" lag time
| ~—r——|

1 ¥ I ] ] 1
0 6 12

time (seconds)

Ficure 8. Displacement of marked fluid as a function of time after current pulse.

The procedure adopted for variation of the forcing relative angular velocity with fixed main
rotation rate was as follows: relative angular velocity was measured with @ = 0, then the
apparatus was brought to full speed, and a time corresponding to several spin-up times allowed
to elapse before the sequential photographs were taken. Then the table was stopped, the relative
angular velocity measured again, and the procedure repeated for a new relative angular velocity.
A typical spin-up time (the e-folding time for the velocity field to reach its equilibrium state)
is 6, and about 20 spin-up times were allowed to elapse in order to insure steady flow. A similar
procedure was followed for the study of the dependence of the circulation on the main rotation

rate.
3.3. The treatment of the data

Flow velocities are inferred from the photographs by obtaining the asymptotic slope of the
curve which measures the distance a given part of the coloured fluid moves in time. The distances
were measured from the photographs by a travelling microscope and are accurate to + 0.5 mm.
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This represents an uncertainty in the velocity of about 5 %,. The major part of this uncertainty
lies in the difficulty of determining the exact leading edge of the line of coloured fluid. Minor
uncertainties introduced by unequal shrinking of the photographic paper during development
are less than 19,.

To obtain the velocity it is necessary to use the asymptotic slope of the distance-time curve
because the chemical technique exhibits a lag time, i.e. the plot of distance against time is not
linear near zero, but generally does have a linear asymptote (see figure 8). Over the distance in
which sequential measurements were taken (< lcm) the variation of the velocity field was
always small enough (< 19%,) so that the velocity could be considered uniform. The asymptotic
slope is presented as the velocity at the centre of this distance for comparison with theory. Four
sequential photographs were taken at each set of parameters. The slopes were obtained either
by averaging various sets of two points or by plotting all the points, and again a 5 %, accuracy
was consistently indicated.

All of the quantitative measurements to be presented here were made at the grid placed
midway between the two spherical surfaces. The technical difficulty of placing more than one
set of grids between the spherical caps has precluded the possibility of obtaining the detailed
vertical structure of the flow, although some visual observations were made with three wires
in the vertical.

4, SUMMARY OF EXPERIMENTAL RESULTS

In this section a brief qualitative description of the experimental results obtained to date is
presented. Figure 9 is a photograph of the basin taken 24 s after the current was pulsed, and the
general features of a linear subtropical gyre are evident. The relevant parameters are displayed
on the figure. For this latitude (6, = 31.4°) the equator lies well below the basin. The sense of the
forcing angular velocity is clockwise as viewed from the front and the main rotation counter-
clockwise viewed from above.

A general southward drift (~ 0.4 mms~!—the geostrophic Sverdrup flow) occurs in the
central region. A zonal flow, eastward in the northern portion of the basin, westward in the
southern, is of comparable speed and appears to be almost symmetric about the central latitude.
A strong western boundary current occupies about one-eighth of the total basin width. The
details of these features are in good agreement with theory. No pronounced boundary currents
are noticed at the northern and eastern edges of the basin. However, a current is observed near
the southern boundary of the basin, flowing towards the east. The flow pattern reverses upon
change of the sign of w. The local effects of the posts on the flow can be observed (note the centre
post, where several wires are joined together).

The next figure (figure 10, plate 12) illustrates the character of the flow as 0, is varied from
31.4 to 0°. The values of experimental parameters for each photograph are presented in the
figure; experience indicates that the qualitative differences are due only to the change in
latitude. The forcing velocity is clockwise for each picture. Note the appearance of an equatorial
undercurrent moving west to east in the region of the equator for ), = 16° and 6° 40’. The extra-
equatorial features appear to blend smoothly with the equatorial flow. When the central latitude
is 0°, two undercurrents appear, above and below the equator. The zonal component in each case
is opposite to the small east-west component of the bottom forcing velocity; the zero of the zonal
flow appears to be located on the equator. The meridional component of undercurrent is more
southward than northward, but is generally opposite to the forcing velocity component. The
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zonal flow appears symmetric, but the western boundary current moves smoothly across the
equator. For small values of the forcing velocity, these flows, including the undercurrents, reverse
with change in the sign of w.

As the bottom forcing velocity is increased, qualitative changes appear in the flow patterns
(see figure 11, plate 13). Subtropically, the most striking change is a migration of the centre of
the gyre towards the northwest. The speed of the western boundary current increases until it is
too fast to measure by the chemical technique. The intense flow continues around the circular
boundary, and is visible as a current even in the northeast. The flow also exhibits some time
dependence.

Ficure 9. Position of ink lines 24 s after current pulse, illustrating general features of extra-equatorial flow.
(0, = 31.4°, Q2 = 6.31 rad s, w = 0.0270 rad s, ¢ = 0.00661, y = 0.00245, ¥} = 0.0495.)

The most striking feature observed in the equatorial flow as the forcing velocity is increased is
the disappearance of the westward flowing undercurrent (which does exist for smaller values of
counterclockwise w). Whether the current becomes unstable or is moving too fast to observe with
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the chemical technique is moot. However, the westward undercurrent does disappear at an
absolute value of forcing velocity for which the eastward undercurrent is stable and easily
measurable. Widths and velocities as functions of the parameters have been measured and
empirical formulae derived.

The effect on the flow pattern of varying main rotation rate is shown in figure 12, plate 13.
Care must be exercised in the interpretation of this set of photographs, because of the varying
ratio of y/e. The pattern is perfectly symmetric when 2 = 0; the westward intensification develops
and intensifies as £ is increased. The Ekman layers are fully developed when 2 = 2 rad s~
This is a striking illustration of the ¢ f-effect’, since the flow between two flat disks remains, of
course, symmetrical as 2 is increased from zero (Baker 1967).

5, THEORY OF THE LINEAR REGIME

Direct solution of even the linearized version of the governing equations and associated
boundary conditions is too complex to accomplish directly. The theoretical analysis therefore
invokes boundary layer and numerical techniques. The boundary layer analysis in the horizontal
variables involves a careful consideration of the boundary conditions and the vertical structure
of the flow, including the Ekman layers. The theory has been developed simultaneously with the
experimental study, with profitable feedback.

The approximate analytical solution of equations (2.6 to 2.9) for steady flow (¢ = 0) involves
simultaneous (ordinary and singular) perturbation expansions in the small parameterse, A, 4, y.
The details of the circulation, e.g. even the simple mid-basin geostrophic flow, depend intimately
on the relative size of these parameters. The discussion here will be descriptive rather than
deductive; a more detailed treatment of the problem is given elsewhere (Robinson 1969) and
should be referred to for amplification of what follows.

5.1. The Sverdrup flow

Away from the vicinity of the circular side boundary the linear flow is describable by Ekman
layers at the upper and lower bounding surfaces and an interior geostrophic flow, characterized
by the Sverdrup geostrophic vorticity balance v = fow/dz. In equations (2.6 to 2.8) let A <€ 1,
A € 1and e € 1, whence, with (2.9)

=Vl —Jo+p, =0, (5.1
— VYV +fu +p:1/ =0, (5.2
=0 (5.3
Uy+v,+w, =0, (5.4
result, to be solved under the conditions, ~

u(x,y,0) = Ug = -0y, v(xy,0) =V = +th,}

u(x,y,1) = v(x,9,1) = 0,
for y < 1. The sense of the lower boundary rotation is traced by o = + 1 (counterclockwise -+ ).

Equation (5.3) implies p(x,y) only. Let §, = (f/2y)iz (near z = 0) and § = (f/2y)} (z—1)
(near z = 1). The velocities are separated into three parts, an interior and two boundary layer
contributions. Let u = u%(x,y) +u(x,y, &) +u(%,y,¢;) and similarly for » and w, but
w? = W(x,y) + fp,z|[f? varies linearly in z. The horizontal functions p, W are governed by
equations obtained upon explicit solution of the Ekman layer equations and satisfaction of all
the conditions (5.5).

(5.5)
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¢ = 0.089 ¢ = 0.091
v = 0.0063 = 0.0063
‘)’% = 0.079 ,),% = 0.079
w=0. w = 0.145rad s~
; £ = 2.10rads1
equator — ;

2= 210radst

0,=0° -~ < cquator
00 = 6.7°
¢ = 0.038 ¢ = 0.043
7= 0.0065 y = 0.0070
yz = 0.081 '}/%: 0.084
w = 0.059rads—! w = 0.062rad s-1
2 = 2.10rad s 2 = 2.08 rad s~!
0,=16°
0, = 26°
equator —
< equator
¢ = 0.0075
y = 0.0024
v = 0.049

w = 0.031 rads™?
2 = 6.31 rad s!

0 = 31.4°

equator —

Freure 10. Variation in flow pattern as a function of 0,. The equator and relevant data are
indicated for each picture.

(Facing p. 548)
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o B m ¥, " . . E ”;».a
Ficure 11. Photographs of flow for large ¢. The right-hand photographs were taken 0.3 s after the left-hand ones.
The upper pictures represent a continuous flow of dye; the lower, a pulse. (0, = 31.4°, 2 = 6.31 rad s,
w = 0.850 rad s~1, ¢ = 0.207, v = 0.00245, % = 0.0495.)

£ = 0.261 rad s—1 Q2 = 0.512rad s
y = 0.059 v = 0.030
v¥ = 0.24 vE = 0.17

¢ = 0.94 ¢ = 048

2 = 2.23 rad s 2 = 317rads? . 2 = 4.15 rad s
y = 0.0069 y = 0.0049 y = 0.0037
vE = 0.0831 v& = 0.070 vE = 0,061

¢ = 0.11 e = 0.077 ¢ = 0.059

£ = 5.30 rad s—1 £ = 6.34rads? Q = 17.37rads!
y = 0.0029 v = 0.0024 v = 0.0021
vt = 0.054 vE = 0.049 vE = 0.046

¢ = 0.046 ¢ = 0.039 ¢ = 0.033

Ficure 12. Flow pattern as a function of 2 (0, = 31.4° w = 0.159 rad s~1).
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equator -

equator — =

equator ->

-

Ficure 26. Equatorial flow as a function of w. (0, = 13.0°, 2 = 6.32 rad s, y = 0.00214 for all pictures.)
Positive w appears on the right, negative w on the left. (a) Lower: w = 0.0297 rad s~1, €oq = 0.00392,
R, = 0.111. Centre: o = 0.0994 rad s™', ¢, = 0.0131, R, = 0.372. Upper: o = 0.249 rad s—!
6y = 0.0329, R, = 0.931.
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equator —>

equator —> ==

equator —

Freurg 26. (b). Lower: @ = 0.300 rad s, ¢, = 0.0396, R, = 1.122. Centre: w = 0.351 rad s, ¢,, = 0.0463,
R,, = 1.31. Upper: w = 0.400 rad 571, ¢,, = 0.0528, R,, = 1.50.

e
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equator —

equator —

equator —

i

Ficure 26 (¢). Lower: w = 0.500 rad s, ¢,, = 0.0660, Req = 1.87. Centre: w = 0.706 rad s—1,
boq = 0.0932, Req = 2.64. Upper: v = 0.802 rad s, €oq = 0.106, Req = 3.00.
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The equation of continuity in a boundary layer variable is

A%
u +vy+2fv§+( ) we = 0.
The Ekman layer solutions

0 0 0
u' = (a'sin &+ blcos &) e %,
1 1

0 0 0
vl = (—btsin§y+alcos ) et
1 1

where a® =TVp—1%, at=—v% b= Ug—u¥ b'=—uf

allow explicit integration of (5.6) across the Ekman layers. The resultant two equations govern
the interior horizontal function. Elimination of W yields the equation to be satisfied by the
interior pressure

- (pxw +[)yy> px

3
2(y+c) [2y(y+¢)]}
The right-hand side of equation (5.7) is 0(1), and exhibits the effect of surface driving on the
geostrophic flow. Since the development of the solution is in the nature of a singular perturbation

expansion, at this point equation (5.7) must be consistently expanded in y. Thus p is 0(y*) and
a geostrophic Sverdrup relation is immediately evident, namely

(pac +[)y> = 7;0'()6' - 3]/ - 46)' (5'7)

be = (y+0)o° 232 (y+0)} (3y +4c—x). (5.8)
The associated w? satisfies the inviscid boundary condition at the top surface to accuracy 0 (y?).
The top Ekman layer is y* weaker than the bottom layer; thus, the total Sverdrup transport is
to a first approximation, compounded from the meridional geostrophic flow plus the Ekman
transport at the driven boundary (Robinson 1965, §11). The zonal geostrophic flow obtains
after integration of (5.8) and evaluation of the resultant free function of y, which depends upon
analysis of the side wall boundary layers.

5.2. Side wall boundary layers of a square basin

Four dynamically distinct types of side wall boundary layers must be considered for the range
of parameters of the linear régime of our experiment. A complicating factor in the circular basin
analysis is the continuous change of the boundary layer dynamics with the angle ¢ (figure 3).
It is instructive to first consider a similar problem in a square ocean basin, where the transitional
dynamics occur in corner regions which need not be considered in detail. Figure 13 shows
schematically the distribution of the layers in the plane z = , the numerals designating particular
types of dynamics.

All of the layers considered have a (horizontal) width thicker than a (vertical) Ekman layer
thickness. Thus the description of the vertical dependence of the side wall boundary layers may
be considerably simplified by considering regions IT to V to have (possibly) important associated
Ekman layers at both top and bottom. The Roman numerals thus refer to flows which are
interior regions with respect to these vertically directed boundary layers, but which are boundary
layers with respect to horizontally directed scaled variables.

The thicknesses of regions IT and III are respectively 0(y%) and 0 (y%). The flow is entirely
geostrophic and hydrostatic and interacts strongly with its Ekman layers, both top and bottom.

58 Vol. 265. A.
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Thus these regions may be referred to physically as (top and) bottom frictional boundary layers.
Mass conservation involves all three terms in the continuity equation. These boundary layers are
in fact contained in the pressure equation (5.7) derived above, evoking respectively the terms
P and p,, to balance the term oc p,. The y? layer can exist only near a western coast. The
approximate equations are solved subject to the boundary conditions (2f)tw F v; = 0, where
£ = y~tx at the edges of the Ekman layers (z = 0, 1). The explicit solutions are given by

u= 7[(:/% +%) x(9) +4/(%) x’(y)] e gven (5.94)
v = ye §veD (5.90)
w =.§.(z— ) (5.9¢)

where y(y) is an arbitrary function of its argument. The yi-layer can exist near either a northern
or a southern boundary, with the local thickness modified by the local value of f~%. The variation
of facross the narrow current is, however, essential to the dynamics in such a manner that these
layers may be appropriately referred to as quasigeostrophic (meteorological vernacular).

—_——— & —

Ficure 13. Boundary layers in a square basin. The roman numerals designate regions of
different dynamics. See text.

The width of regions of type IV is O(y#2). The motion is approximately hydrostatic and the
relatively strong downstream velocity component is related geostrophically to the cross-stream
pressure gradient. However, lateral stress divergence dominates the downstream pressure
gradient. Strong interaction again occurs with top and bottom Ekman layers; thus these regions
are mixed side and bottom frictional layers. Mass conservation is maintained approximately
between the cross-stream and vertical fluxes. For example, if § = y#A-1x near the western coast,
the approximate downstream equation is y#v,, —fu = 0, the continuity equation is u,+w, =0,
and the boundary condition at the edges of the Ekman layers (z = 0, 1) are (2f)% Aw + yi‘vﬁ = 0.
The velocity components are found to be

U= (gfz)%v, (5.104)
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v = D(y) ey, (5.10b)
((;;f;;; v, (5.10¢)

where @(y) is an arbitrary function. The solutions near an east coast are, except for sign changes,
the same as (5.10). The y* A-layers near a northern or southern coast are modified by effects due
to the parameter /1, since the relatively strong longitudinal flow component augments the
Coriolis acceleration due to the horizontal component of rotation.

The regions of type V are of width 0(y#2). Mass continuity is maintained two dimensionally
as in the y#A-layers. Lateral stresses enter in both the downstream and vertical momentum
equations, and horizontal Coriolis terms are important.

Consider the role of the various boundary layers in the satisfaction of the no-slip boundary
conditions on the side walls of the square ocean basin vertically interior to the Ekman layers of the
side wall boundary layers. Suppose the circulation to be driven by an 0 (1) distribution of bottom
velocity (top velocity 0). Then the bottom Ekman layer velocities are 0 (1), with an associated
mass transport 0 (y%), as is the mass transport of the 0 (y?) (Sverdrup) geostrophic velocities of
region I. The 0 (y) transport of the upper Ekman layer is negligible. The y* mass flux in the
driven bottom Ekman layer flows under the side wall boundary layers into a narrow corner
region (~ (v/202sin 6,)} cm on aside) and emerges into region'V as an 0(y#) flow normal to the side
wall. This flow has locally the identical normal transport of the incoming Ekman flow because
of the two-dimensional character of mass conservation in region V. Thus this flow adds together
with the normal component of flow from region I to satisfy the normal velocity component side
wall condition. Near the eastern wall the contributions from‘I and V are the only leading contribu-
tions to the normal flow component, but near the northern and southern wall the contributions
from region III aid in the satisfaction of the normal flow condition, as do the contributions from
regions IT and IV near the western wall.

The discussion given here depends upon a knowledge of the relative amplitude in vy, A of the
velocity components in the various layers. Since the circulations of the layers broader than
type V which contribute to the satisfaction of the normal flow condition themselves close
in type V regions through their associated (top and bottom) Ekman layers and corners (see
equations 5.9, 10), the normal transport of these associated Ekman layers must be properly
taken into account.

All around the square the type IV boundary layers serve to contribute to the satisfaction of
the no-slip condition on the tangential horizontal velocity component. The leading contributions
to the tangential component near the western, northern and southern, and eastern boundaries
are, respectively, 0 (1, y%,y%). Thus the strongest boundary current is the 0 (1) western boundary
¢Gulf Stream’. The no-slip condition on the vertical velocity is accomplished in region V.

In consideration of the normal flow condition it is useful to note that (see equation 5.104, ¢)
the approximate two-dimensional character of the mass conservation of the y#A-layers (IV)
implies that the normal mass influx into these regions all effluxes through associated Ekman
layers. Thus IV, its associated Ekman layers and corners, and its associated V exhibit a recirculat-
ing double celled structure. The other layers (II, III) involved to leading order in the normal
flow condition are completely geostrophic and hydrostatic and are therefore necessarily con-
tained in the full pressure equation (5.7). The above considerations imply a simple boundary
condition on the total geostrophic velocity component (I, II, III) near the side walls, namely,

58-2
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that its transport be equal and opposite to that of all the associated Ekman layers (top and
bottom) including, of course, the forced Ekman bottom transport from the interior.

The physical length scales corresponding to the non-dimensional eastern and western coastal
layer thicknesses are

117 4 2 Ro
(IT) Sryil = (2Qsin 00) g tan 6o,

Ty vH? \i
(IV)  y*af =L = (2Qsint90)

i - (. YH )
(V) rAf=L (2Qsin6’0)

The condition for the existence of the boundary layer structure as discussed above is found
to be A < yi. For A > v# type Il and IV layers are replaced by regions in which the downstream
momentum balance involves both lateral stress and pressure gradient as well as Coriolis accelera-
tion. The Ekman layers are weak and side friction is dominant. These layers are of thickness
YIARL = (vR,/292 cos O,)}. Thus bottom friction dominates side friction in a thin system if
H < (v[285in 0,)% (R, tan 0,)3.

5.3. Approximate resulis for a circular basin

For the parameter range of the linear régime of our experiment A < yt and bottom frictional
layers exist. Thus the full pressure equation (5.7) plays a central role. The detailed analysis for
the circular basin is being performed by a numerical integration of equation (5.7) in polar
coordinates, subject to the transport boundary condition on the total geostrophic flow

{ny)[}‘*[l (f) ][Jlf (2f) (5.11)

Equation (5.11) results simply from adding the radial component of the top and bottom Ekman
layer transports (solutions 5.6) to the geostrophic transport and evaluating the result at r = 1.

Although the results of the numerical analysis are not yet available, it is possible to carry over
some of the analytical results for the square basin to the circle for purposes of comparison with
experiment. An approximate expression for the zonal interior geostrophic flow may be obtained
through use of a transport boundary condition which may be expected to be valid in the range
|y| < ~1%. Corresponding to the east coast condition in the square, the geostrophic transport is
simply matched to the forced Ekman transport for ¥ > 0. There results

v\
(25in¢) [(Uy+V) cos ¢+ (Vg — )sm¢]——~q§ 0. (5.12)

Upon integration of (5.8) the pressure is given by
p= 2\/2[f§ — 1x2++ 3yx+4ex) + I (y)]. (5.13)
The geostrophic zonal velocity is thus

Ml(ry}
S22t

G = [5/73(— 3a2+ Byx +dex) +f23x+ IT'(y)], (5.14)
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Equation (5.12), together with equation (5.13) evaluated at x = +,/(1 —y?2) allows the evaluation

of II'(y);
1 — Zf% yf% _ — 2 c
H(y)—«/(l—y?‘)—l—\/(l—yz)( V(I —9?) + 3y + 4c)

1
1

=~y g

and thus #¢ 1s determined.

(1;2?/'2+3y«/(1—y2)+46«/(1—y2)), (6.15)

The east and west coast boundary layer analysis should be applicable to the circular basin
sufficiently close to ¢ = 0, 7. The expression (5.95) for the velocity parallel to the boundary in
the yi-layer (II) in cylindrical coordinates becomes

v = x(¢) exp [%% (l—r)] . (5.16)

Although further analysis is necessary to determine the arbitrary function y(¢) for all ¢, it is
possible to evaluate y(m) by noting that the total meridional transport integrated across the
planey = 0(—1 < x < 1, 0 < z £ 1) must vanish.

The leading contributions (0 (y%)) come from the boundary current (5.16), the (Sverdrup)
geostrophic drift, and the bottom Ekman layer, but the latter transport vanishes upon integration
in x. The contribution to the transport from the flow of type IV (5.105) is 0 (y£A), which provides
a correction to the western boundary current of about 15 %,. The final dimensional expression

o= i o () —ee- [0+ G (5.17)

results for the tangential velocity in the western boundary current.

6. COMPARISON OF THEORY AND EXPERIMENT

Formulae for the structure of the flow in the linear régime have been presented in § 5; in this
section the results of experiment are compared with the predictions of the theory. Good agree-
ment between theory and experiment is indicated, thus establishing the validity of the f-plane
analysis as applied to the experimental system in this parameter range.

6.1. The meridional flow

The meridional velocity was measured as a function of w, y, and of position. Figure 14 is a
plot of the measured v against » at a representative point for fixed main rotation rate. The least
squares fit to the points is

v = (1704 0.06) w (cms~1),
the uncertainties arising from the sources discussed in §3.3. The linear theory (5.8) predicts a

straight line whose equation is v = 1.780 (cmsY).

Although the nonlinear parameter e ranges from 0.00244 to 0.205, no systematic deviation from
a linear relation between v and o is indicated. The agreement exhibited indicates that a geo-
strophic Sverdrup relation is indeed valid for this system.

The y-dependence of the meridional flow is presented in figure 15. Although considerable
scatter is exhibited, a least squares fit to the points yields

v oC »),+(0.40:l:0.06),
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which is consistent with the theoretical exponent 0.5. The scatter in the points is due to the small
range of speeds accessible.

The slow variation of the meridional velocity upon position is exhibited in figure 16. The
theoretical displacements are compared directly with the observed displacements traced from
a representative photograph in the linear régime. In the interior the agreement is good; the
discrepancies occur in the north and south. As indicated in § 5.3, corrections to the leading order
in the y-expansion are not expected to be negligible in those regions.

1.8
HER
- / \ ——— theory
{ J\ ® experiment
- \ / *
12k i }
T e
g |
® i
061 *
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O 03 06 g weds?
0 ' 01 ' vz °

Ficure 14. Interior meridional ‘Sverdrup’ flow v as a function of w and e. (0, = 31.5°, 2 = 6.32rads?,
v = 0.00245.) The data was taken at the point indicated by the cross in the circle at upper right, x = 7.62cm,
y = 5.08 cm. The error bars denote typical uncertainties.
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Ficure 15. 2 and y dependence of interior meridional flow. The line has the theoretically predicted slope of 1.
Data taken at ¥ = 7.62 cm, y = 5.08 cm. (w = 0.0970 rad s~1, 6, = 13.0°.)
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Ficure 16. Comparison of predicted and observed meridional displacements from a single photograph.
(Measuring grid indicated by dashed lines.) (6, = 31.4°, 2 = 6.31rads™, o = 0.00872 rad s-1,
¢ = 0.00218, v = 0.00245, y¥ = 0.0495.)

6.2. The zonal flow

"The zonal flow was also measured as a function of w, v, and of position. Figure 17 is a plot of
the measured « against » at a representative point for fixed main rotation rate. The least squares

fit to the points is
u = (0.764 + 0.020)w (cms~1).

The theory (5.14) predicts a straight line whose equation is
u = 0.803w (cms™1).
The y dependence of the measured zonal flow is

U oC Y +0:-55:0.09)

which is consistent with the theoretical exponent 0.5 (figure 18). Although fewer data were
taken than for figure 15, the scatter is less; this is probably fortuitous.

The variation of the zonal velocity upon position is exhibited in figure 19. The agreement in u
is comparable to that in v; the zonal flow is sensitive to the distribution of I7'(y) (5.14) and thus
credibility is lent to the boundary layer analysis.
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Ficure 17. Interior zonal flow as a function of  and €. The data were taken at the point indicated by the cross in
the circle at upper right, x = 10.16 cm, y = 7.02 cm. Error bars denote typical uncertainties. (6, = 28.9°,
Q2 = 5.03 rad s, y = 0.00299.)
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Ficure 18. £2 and y dependence of interior zonal flow. (w = 0.0120 rad s, 6, = 28.9°.) The straight line has
the theoretically predicted slope of }. Data taken at x = 5.58 cm, y = 7.62 cm.

6.3. The western boundary current

Here the e-folding width of the current as a function of y, the magnitude of the velocity at
a given point as a function of w, and a single experimental velocity profile are compared with
theory.

The y-dependence of the e-folding width is determined from a plot of the logarithm of the
slopes of several curves of Ig v against (1 —r), each curve obtained for a single value of y. Nineteen
such curves were obtained from photographs of the boundary current, and the e-folding width
for each curve was determined by the method of least squares. The logarithms of the resulting
widths were then plotted against the logarithm of £ in order to exhibit the y-dependence
(figure 20). A slope of 0.552 + 0.054 results; the errors have been computed by standard
techniques. The theory predicts a slope of 0.5. The good agreement establishes the existence of
the O (y%) boundary layer in this experiment.
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A determination of the azimuthal velocity at the point ¢ = 7 and x = 17.8cm as a function
of  for fixed y = 0.0025 is presented in figure 21. The least squares fit to all the points yields
v = (9.41+0.30)w (cms™*). Theory predicts (5.17), v = 8.53w (cms~). The deviation from the

10

——— theory

05 :
- --- experiment

-05

1
—0.25

Ficure 19. Comparison of predicted and observed zonal displacements from a single photograph.
(0, = 31.4°, Q = 6.31 rad s, & = 0.00872 rad s7%, ¢ = 0.00218, y = 0.00245, v¥ = 0.0495.)
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Ficure 20. E-folding width of western boundary current as a function of £ along the line y = 0. Linear theory
predicts a slope of §; a least squares fit to the experimental points yields a slope of 0.552 + 0.054. (6, = 31.4°,
w = 0.0159 rad s-1, ¢: 0.00405— 0.00234, y: 0.00292— 0.00147.)

theoretical line appears systematic. The linear theory holds strictly in the limit €~ 0 and non-
linear effects are expected to appear in this boundary layer when ¢ > 0(y%). (For this data
v% = 0.05.) If a least squares fit be made (somewhat arbitrarily) for the points € < 0.024,
v = (8.38 + 0.25)w results, in good agreement with theory.
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- A velocity profile (for the same ) well within the linear régime (¢ = 0.0039) is presented in

figure 22. This is a reduction from a single photograph, and although the lack of averaging
increases the uncertainties, agreement is satisfactory with the profile of equation (5.17).
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Ficure 21. Interior western boundary current northward flow as a function of ® and € at ¢ = 7 and x = 17.8cm.
Error bars denote typical uncertainties. (6, = 31.4°, Q = 6.31 rad s~?, y = 0.00245, y% = 0.0495.)
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Ficure 22. Velocity profile of western boundary current at ¢ = . Error bars denote typical uncertainties.
(6, = 31.4°, Q = 6.21 rad 51, € = 0.00390, y = 0.00249, y% = 0.0499.)

6.4, The eastern boundary current

At the eastern boundary, the interior meridional flow is brought to zero, theoretically in a
weak boundary layer 0 (Ay%) in thickness. The e-folding width of the boundary flow has been
determined experimentally as a function of w along the line y = 0. Curves of velocity against
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position were obtained from single photographs, and the e-folding widths, determined by least
squares methods, are plotted in figure 23. An average of the points for € < 0.024 yields an
e-folding width of 1.55 + 0.20 mm; the theory predicts 1.87 mm.

6
——— linear theory
i ® experiment
4 -
g
E
= .
T .
3 2:_~__._:__: _______________ . :
..'-'. '......" I. ' ' . ‘ ) )
0 ! | 1 L 1 -1
004 0.08 Oag /rads
| | | { { | 3
43 T 240 10%

Ficure 23. Measured e-folding width of eastern boundary current against  and ¢ along y = 0 compared to
prediction of linear theory. (6, = 31.4°, 2 = 6.31 rad s~1, y = 0.00245, 7% = 0.0495.) Note large displace-
ment of final point. Error bars denote typical uncertainties.

7. PHENOMENOLOGY

The remainder of the experimental results to be presented here cannot as yet be subject to the
same critical comparison with theory as those of the last sections. As both the theory and experi-
ment of the nonlinear subtropical gyre are in progress, the results presented are preliminary.
The equatorial experimental results are exploratory but quantitative; the theory has been
initiated.

7.1. The nonlinear subtropical gyre

For relatively large values of o, ¢ increases and the circulation changes qualitatively (figure 11).
Recall that the interior geostrophic velocity (figure 14) remains linear in w and thus exhibits no
nonlinear effect. Since the strong western boundary current develops speeds 0 (10cms—), and
the chemical technique is limited to speeds less than ~ 3cms™, quantitative data is not yet
available for large €. Techniques for the measurement of rapid velocities in our apparatus are
under investigation.

However, it is possible with the present technique to make a quantitative measurement in the
nonlinear régime. The point in the fluid where # and v are simultaneously zero will be referred
to as the ¢ centre of the gyre’. Because of the spacing of the wire grid, a study of flow photographs
could locate this feature of the flow only within a circle of radius 1 cm. Figure 24 illustrates the
position of this point as a function of  and e. The scatter in angle simply reflects the coarseness
of measurement. As ¢ increases beyond 0.05, the centre of the gyre moves rapidly towards the
north and west.

For large enough e the circulation appears to be not entirely steady. The sequential photo-
graphs of figure 11 indicate the changing nature of the flow in time as delineated by a steady
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Ficure 24. Position of centre of gyre as a function of € and w.
(6, = 31.4° Q = 6.31 rad s~1, y = 0.00245, y¥ = 0.0495.)

Ficure 25. Photograph of a northward easférn boundary current (at right centre). 7
(0, = 31.4°% ¢ = 0.0260, y = 0.00245, y¥ = 0.0495.)
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release of coloured fluid. Motion pictures of this phenomenon reveal a possible periodic motion
superimposed on the strong circulation, an obvious oscillation of the oval in the second quadrant.
The dye lines located between the centre of the gyre and the centre of the basin approached each
other and receded in about 7s. The shortest period normal mode (Rossby wave) for the basin
has been calculated to be 7.4s. Further more careful experimentation is necessary to establish
the nature of the observed time dependence.

A nonlinear effect is also observable in the eastern boundary current. For ¢ > 0.024, the
width rapidly increases (figure 23). Although only a single point appears on the figure for
large e, its reliability is established by crude width determinations from many photographs at
high ¢; the rapid width change is clearly evident. The increasing width is, in fact, associated with
a northward flowing current (see figure 25). Although poleward eastern boundary currents have
been observed in the ocean (Wooster & Reid 1963), their dynamics and role in the general
circulation is not sufficiently well understood to permit comparison with the laboratory
experiment at this time.

To estimate the onset of nonlinear behaviour, effective local Rossby numbers for various
regions of the flow have been calculated, based upon the scales and amplitudes appropriate to
the linear régime square basin. Region I to IV (figure 13) and their associated Ekman layers
have been considered.

Nonlinear effects are negligible in the broad western boundary current (II) and also in its
Ekman layer when ey—# < 1. Thus nonlinearity becomes important in these regions when € ~ 3.
The same criterion pertains to the quasigeostrophic current (III), but in its Ekman layer the
weaker condition € ~ % holds. The smallest value of the external Rossby number for incipient
nonlinearity is € ~ %A, which condition pertains simultaneously in all the layers of width
0 (y%)) (IV) and all their associated Ekman layers.

These criteria are useful in the interpretation of figures 23 and 24. For those measurements
¥ = 0.00245, y* = 0.0495, y4A = 0.0110. The rapid broadening of the eastern boundary current
and the start of the migration of the centre of the gyre are seen to occur for € ~ 0.020, halfway
between these two criteria.

7.2. The equatorial undercurrent

When the latitude of the centre of the basin is less than 16°, a zonal current is observed in the
vicinity of the equators of the defining spheres, flowing in the direction opposite to the longi-
tudinal component of the surface forcing velocity (figure 10). The axis of this equatorial under-
current lies on the equators in the west but deviates northward to the east. This deviation may be
due to the distribution of driving velocity, or to the circular boundary, or perhaps may have a
more profound dynamical or kinematical origin.

A series of studies were carried out at 6o = 13.0° (where the equators of the defining spheres
pass midway between the centre of the basin and the most southerly point of the rim) in order to
determine the dependence of the structure of the flow on the parameters. This 6, is the best
compromise to achieve a strong zonal component of surface velocity and yet have the equator
isolated from the southern boundary. Flow patterns as a function of w are presented in figure 26,
plates 14 to 16. The equatorial flow is observed to join smoothly to the extra-equatorial flow in
the following way: the eastward equatorial undercurrent (forced by a clockwise surface velocity) is
fed from the north and south by the interior geostrophic drift, a region of divergence at the
western side of the basin feeds both the eastward equatorial current and the northward western
boundary current; whereas the westward flowing equatorial undercurrent (forced by a counter-
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clockwise surface velocity) loses water to the north and south interior geostrophic drift, and
flows towards a convergence with the southward flowing western boundary current.

The equatorial current system is apparently ‘symmetrical’ with respect to the sign of w for
small |w|. The behaviour as |w| increases depends on the intensification of the equatorial flow
together with the tendency of the western boundary current to intensify, with the maximum of
the speed moving northwards (w < 0) or southwards (w > 0) (recall figure 24). When w ~ 0.25
rads™! (figure 26¢) a streakiness has fully developed in the dye pattern in the west equatorial
convergence zone, probably due to high speed but possibly an incipient instability. As w increases
the east equatorial flow develops an irregularity which appears to migrate westward. For
® > 0.5rad s~ westward equatorial undercurrent is no longer observable, and even a qualitative
description of the flow is inaccessible to the chemical technique. In contrast the eastward flowing
undercurrent (w < 0) remains well defined and measurable for even the highest |w| studied.

ufcm st

‘{0.6 .

empirical line
104 *: (u = 0.76 £ 0.05 w)

e experiment

counter clockwise
I I ! I ! ! . 3 + . L ! w /rad s—1

04 [ 04

clockwise

T 2

Ficure 27. Maximum zonal velocity of equatorial undercurrent as a function of w at x = 0.
(6, = 13.0° 2 = 6.32rad s7%, y = 0.00214.)

Four quantitative studies were carried out on the undercurrent: the width and speed as a
function of w and 2 at ¥ = 0 (¢ = —4m). A least squares fit for the speeds (figure 27) yields the
equation = (0.76 + 0.10)w (cm s71). The width of the current (defined as the distance between
the zeros of «) is a slowly varying function of w (figure 28). Note the apparent stronger 2 —
dependence of the westward flowing current, probably associated with the increasing strength
of the incoming western boundary current. The speed is a slowly varying function of 2
(figure 29); the least squares fit from a logarithmic plot yields £+084£0.08), The empirical width
dependence on 2 (figure 30) is Q+0-17£0.05),

The measurements of maximum speed (u,,) and the width (#) allow an estimate to be made
of the relative importance of terms in the momentum equations at mid-depth in the equatorial
region. We assume that all terms contribute to the continuity equations, that 9/dx, 9/0z remain
0(1) but 9/dy ~ 0 (Z1), and that horizontal pressure gradients are of the same order as Coriolis
terms across the region. Then the leading terms are those characteristic of the geostrophic mid-
latitude flow with the addition of Coriolis accelerations resulting from the locally horizontal
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component of basic rotation (the local effective A is A.¥~2 ~ 0(1)). The most significant

departure from this balance occurs in the longitudinal equations. The relevant local Rossby

number is €., = €u,, £ 2 The vertical frictional term dominates the cross-stream frictional term
in the ratio £?A~%; whence the most important Reynolds number is R, = €u v~ The
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Ficure 28. Width of equatorial undercurrent (distance between two zeros of zonal velocity) as a
function of  at x = 0. (6, = 13.0°, 2 = 6.32rad s, y = 0.00214.)
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Ficure 29. Maximum velocity of equatorial undercurrent as a function of Q at x = 0. (6, = 13.0°,
o = 0.0969 rad s—1.) The dotted line represents the least squares power law fit to these points.

empirical results imply R, = 5w. In the range of |w| investigated (0.01 to 0.8rad s—1),
1073 < €4 < 1071, 0.04 < R,y < 3. It is of some interest to note that Re,, = 1 when w = 0.27
and to speculate as to the relevance of this parameter to the phenomenon occurring in the west-
ward undercurrent for 0.25 < w < 0.40 rad s—*. However, the occurrence of horizontal Coriolis
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terms means that boundary layer structure in the vertical is possible (although the usual
Ekman layers cannot exist equatorially) and a more important Reynolds number may be
associated with such a layer.
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Froure 30. Width of equatorial undercurrent as a function of 2 at x = 0. (0, = 13.0°, @ = 0.0969 rad s1.)
The dotted line represents the least squares power law fit to these points.

8. CONCLUDING REMARKS

The model constructed has provided a variety of interesting phenomena relevant to the
general circulation of a barotropic ocean. Good agreement has been found between the experi-
mental results and the prediction of linear boundary layer analysis for a subtropical gyre on the
p-plane. In particular, the Sverdrup vorticity balance and the existence of bottom frictional
boundary currents have been verified. Predicted Rossby numbers for the onset of nonlinear
behaviour of the gyre have been found in reasonable agreement with observed onset; the position
of the centre of the nonlinear gyre has been measured. The equatorial currents have been studied
extensively as functions of all the variable parameters and an apparent instability observed.

Study is in progress of details of the various horizontal and vertical boundary layers for
comparison with the numerical analysis for the circular basin. The nonlinear study will be
extended with the techniques under development for the measurement of large velocities.
Further study of the observed time dependence of the flow in the nonlinear régime is intended
and a search for resonant modes under time dependent forcing is to be carried out with special
apparatus which has already been constructed.

The success of the present experiment points the way toward the design of a variety of other
oceanically relevant laboratory experiments through modification of the present equipment or
construction of more specialized apparatus. A change of western coastal topography could
provide an experimental basis for the study of topographical control of bottom frictional
boundary layers and associated separation questions. A thinner ocean (plausible with higher
rotation rates) would reduce the importance of the horizontal Coriolis terms so that a more
geophysical equatorial model could be achieved. A thin spherical annulus could provide a
geometry for the study of atmospherically relevant equatorial dynamics. Special geometry is
also of interest for the study of polar flows; e.g. the coupled general circulation of a subpolar
gyre and an Antarctic circumpolar current could be investigated.
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NoTATION

The following is a list of symbols employed in the text:

hg;m;;c,"%bﬁ{o

spherical coordinates in the radial, latitudinal and longitudinal directions

corresponding velocity components relative to a sphere rotating with angular
velocity £

magnitude of the rotation of the model

kinematic viscosity

density

deviation of the pressure from its static value

radius of the inner sphere

radial distance between the spherical surfaces

latitude of the centre of the spherical circle

radius of the spherical circle

surface coordinates in the radial, latitudinal and longitudinal directions

surface polar coordinates centred at (x = 0, y = 0)

magnitude of rotation of the lower block

a characteristic time scale

Q—ergaéb; (%) (a non-dimensional time scale)
VR,

20 cos 0, H'L |
wR,
2Qcos 0o L.

H|L (an aspect ratio)
HR,|L? (a geometrical parameter which measures Coriolis acceleration caused by the

an Ekman number)

(a Rossby number)

locally horizontal component of rotation)
¢+y (a non-dimensional Coriolis parameter)
(Ro/L) tan 0,
longitudinal velocity of the bottom block
latitudinal velocity of the bottom block
sense of rotation of the bottom block (counterclockwise + 1, clockwise —1)
(f12v)¢z, (f|2y)% (z—1) (vertical boundary layer variables)
interior velocity components
boundary layer contributions to velocity
functions of y only
y4A-1x (a horizontal boundary layer variable)
v~tx (a horizontal boundary layer variable)
maximum non-dimensional velocity of equatorial undercurrent
non-dimensional width of equatorial undercurrent
€llyq £~ (an equatorial Rossby number)
€lleq Y™t (an equatorial Reynolds number
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IiIGURE 6. Above: the experimental apparatus, rotating table and drive mechanism. Below: the
apparatus, relative drive mechanism (lower centre) and motorized camera (upper right).
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Ficure 9. Position of ink lines 24 s after current pulse, illustrating general features of extra-equatorial flow.
= 0.0495.)

(0, = 31.4° £ = 6.31 rads~1, w = 0.0270 rad s~1, ¢ = 0.00661, y = 0.00245, y2




= ().089Y
":,f — “,”“ﬁ:;

v2 = 0.079
w= 0.142 rads™?

equator —>

Q= 2.10rad s
()

8]

()

€ = 0.038

v = 0.0065

yZ = 0.08]

w = 0.059rads
Q = 2.10 rad 51

-" 'l‘:! F'.I'?"-._. ! '

( = 16

4558

{/

?
..'."'IJ L 4=

cquator —-

Ill.
4 B
; . - .
# ¥t o g &
= s A ¥ "3 r 3 - -
it 4 ad AW ]
= r ¥ | A -
/ i 3 0 el ' (¥4
B o - L e
:_ B o]
e

c = 0.0075
':,!] — (.0024
‘;f‘.*' = (0.049
w = 0.031 rad s

= 6.31 rad s!

(‘([llill(}l* >

s = ().0Y1

— (0.0063

2 = 0.079

— (.145 rad s !
= 2.10 rad s—

<- ¢quator

f = 6.7°

L

0.043
0.0070

2 = (.084

0.062 rad s 1
2.08 rad s~

Il

Il

26°

cquator
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indicated for each picture.



I'icure 11. Photographs of flow for large ¢. The right-hand photographs were taken 0.3 s after the left-hand ones.
The upper pictures represent a continuous flow of dye; the lower, a pulse. (0, = 31.4°, £ = 6.31 rad s,
w = 0.850 rad s~ 1, ¢ = 0.207, v = 0.00245, vz = 0.0495.)
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Ficure 12. Flow
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pattern as a function of 2 (0, = 31.4°, w = 0.159 rad s—1).
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Ficure 26. Equatorial flow as a function of w. (0, = 13.0°, Q = 6.32 rad s~1, v = 0.00214 for all pictures.)
Positive @ appears on the right, negative @ on the left. (¢) Lower: o = 0.0297 rad s~, ¢, = 0.00392,
R, = 0.111. Centre: ® = 0.0994 rad s=!, ¢, = 0.0131, R, = 0.372. Upper: o = 0.249 rad s,

€oq = 0.0329, Ruq = (.931.
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FIGURE 26. (b). Lower: w = 0.300 rad s7%, ¢,, = 0.0396, R, = 1.122. Centre: o = 0.351 rad s, ¢, = 0.0463,
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Ficure 25. Photograph of a northward eastern boundary current (at right centre).
(6, = 31.4° ¢ = 0.0260, y = 0.00245, v = 0.0495.)



